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ABSTRACT 
 

THE ANTIBACTERIAL EFFICACY OF ETHANOLIC WHOLE-LEAF MORINGA 
OLEIFERA SUB-FRACTIONS ON ESCHERICHIA COLI 

 
Tanner Marc Orders 

B.S., Appalachian State University  
 

Chairperson: Chishimba Nathan Mowa, Ph.D. 
 

In an effort to provide safer alternative options to pharmaceutical-based 

antibacterial treatment for infection-induced preterm labor, we have previously used 

whole-leaf extracts and high performance liquid chromatography (HPLC)-isolated 

subfractions of hydroethanolic Moringa oleifera (MO) to screen the antibacterial efficacy 

of MO against Escherichia coli (E. coli), a leading cause of urinary tract infections 

associated with preterm labor. These earlier studies found the ethanolic whole-leaf extract 

as well as three subfractions out of eight, to be the most potent. Here, we test the potency 

of each sub-fraction as well as investigate whether the antibacterial effects of the most 

potent leaf sub-fractions act synergistically, using in vitro liquid broth assays in a dose-

dependent manner. Of the eight sub-fraction screened, sub-fraction five exerted the most 

antibacterial efficacy against E. coli. No significant synergistic antibacterial activity was 

observed between subfractions four, five, and six. We conclude that the anti-bacterial 

activity of whole leaf M. oleifera is exerted by the potent subfractions in a non-

synergistic manner. Ongoing studies in our lab are testing the antibacterial potential of 

MO whole seed extracts. 
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INTRODUCTION 
 

Preterm birth is defined as birth before the 37th week of gestation and affects 

approximately 15 million children annually (World Health Organization, 2017). It has 

been projected that if these trends continue to rise, more than 1 million preterm infants 

will not live to the age of five and those that do survive will likely have a life of perpetual 

ill health (Liu, 2016). These health challenges include respiratory problems, cerebral 

palsy and mental impairments (Centers for Disease Control and Prevention, 2017). 

Unfortunately, it is estimated globally that approximately three-fourths of all preterm 

births could be prevented with current medical practices (World Health Organization, 

2017). The premature loss of cervical integrity, such as from a previous preterm birth, in 

the expecting mother is one of the key causes of preterm birth (Williams, 2015), which is 

largely triggered by either bacterial infection, inflammation and or a previous preterm 

birth history (American Pregnancy Association, 2017). The present study focuses on 

testing the effectiveness of a natural remedy in treating or preventing infection- and 

possibly inflammation-induced preterm birth.  

Infection occurs when tissues are colonized by harmful bacterial as a result of the 

bacterial toxins released in the body, subsequently inducing an immune response 

(MedlinePlus, 2018). These immune responses will lead to immune cell tissue 

infiltration, vascular alterations, such as angiogenesis and lymphangiogenesis and notably 

inflammation (MedlinePlus, 2018). In the same vein, if maternal reproductive tissues 

were infected, i.e., either the cervical tissue directly or other nearby fluids or tissues, such 

as the amniotic fluid or placenta, the triggered inflammation could be enough to 

compromise cervical remodeling and barrier (Kirchner, 2000). Bacterial infections that 
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result in this form of preterm labor are caused by various microbes, including Escherichia 

coli (E. coli), which descends from an infected urinary tract (Mayo Clinic, 2017).  

The incidence of preterm birth has been notably greater in developing regions, 

such as Africa and Asia when compared to the west (Tielsch, 2015). It is likely that in 

these developing societies it is too costly to afford medical treatments and measures used 

to prevent preterm birth (Online Africa Renewal, 2017). Furthermore, bacterial-induced 

preterm births are ethically far more challenging to treat with antibiotics because of the 

teratogenic effects that these drugs pose to the growing fetus (Norwitz, 2009). Therefore, 

rather than using a prescription antibiotic that could be harmful to the fetus, a 

naturopathic option could be considered to prevent bacterial or inflammation-preterm 

labor.  

Moringa oleifera (M. oleifera), otherwise known as The Miracle Tree, is a 

superfood and super medicinal plant indigenous to south east Asia and its oil has been 

used for both nutritional culinary and sun protectant for quite some time (Moringa The 

Miracle Tree, 2018). M. oleifera contains a plethora of nutrients, including vitamins A 

and C and calcium and potassium, and it has more protein per weight than cow’s milk 

(Trees for Life International, 2011). M. oleifera also contains biologically active 

phytochemicals, such as glucosinolates, flavonoids, and phenolic acids (Saini, 2016), and 

importantly including those with anti-bacterial activity, such as 4-(α-L-

rhamnopyranosyloxy)benzyl isothiocyanate and methyl N-4-(α-L-

rhamnopyranosyloxy)benzyl carbamate (Wang, 2016). For instance, previous studies in 

our lab and others have shown, whole leaf ethanolic extract of M. oleifera inhibits the 

growth of E. coli comparable to common prescription antibiotics (Smith, 2016). One of 
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the advantages of M. oleifera is that it is readily accessible and grows in areas most 

affected by preterm labor, and thus making it readily available to pregnant mothers in 

these regions (Trees for Life, 2011). Furthermore, the economic cost of developing the 

plant products is not as costly as pharmaceuticals, making M. oleifera economically 

affordable in third world countries (Ezugwu, 2014).  

In the present study, we sought to identify the whole leaf ethanolic extract of M. 

oleifera sub-fractions with anti-bacterial components, based on our recent studies (Smith, 

2016). We hypothesized that the whole leaf ethanolic extract of M. oleifera likely has 

subfractions with varying degrees of anti-bacterial properties, which collectively could 

also have synergistic effects. The data generated from the present study could pave the 

way for the development of a safe and effective M. oleifera product for therapy of 

bacterial-induced preterm labor.  

 

	
	 	



4	
	

	

MATERIALS	AND	METHODS	

	

Microbe and cell culture used 

The present study used a non-pathogenic E. coli, D51α, which was generously provided 

by Dr. Ece Karatan (Department of Biology, Appalachian State University, Boone, NC). 

Various standard microbial tests were performed to assess the anti-bacterial activities of 

M. oleifera using standard LB agar and glycerol liquid media, including diffusion assays, 

lethal-dose 50s (LD50), and minimum bactericidal amounts (MBA), as described below. 

Isolated colonies were inoculated and grown in liquid media for later experiments. To 

prevent contamination of the stock bacteria, as well as to prepare for further experiments, 

glycerol liquid media was prepared and inoculated with E. coli. A single colony from a 

petri dish streaked for isolation with E. coli was aseptically inoculated into 2 mL of LB 

broth (Ameresco, Solon, Ohio). The bacteria were cultured at 37°C for 24 hours, and 

stored at -80°C until needed. The bacterial concentration was consistently kept at 1500 

CFU/µL.  

 

Determination of an Effective M. oleifera Extract 

 Previous studies conducted by our research group determined that the most ideal 

M. oleifera extract for inhibiting E. coli was the ethanolic whole-leaf M. oleifera extract 

(Figure 1). We decided to divide the phytochemicals of this ethanolic whole-leaf M. 

oleifera extract into sub-fractions. 
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Stock M. oleifera Subfractions 

 M. oleifera was grown, processed and its sub-fractions from whole leaf ethanolic 

extracts were isolated using HPLC at North Carolina A&T University by Joshua Idassi 

and Jahangir Emrani (Table I). The residual ethanol from whole leaf extracts were 

removed by rotary evaporation and the extracts, as well as the sub-fractions were both 

suspended in 0.1 M PBS. Due to the varying concentrations, all subfractions were diluted 

to 1 mg/mL for consistency.  

 

Diffusion Assay for Zones of Inhibition  

 All procedures were performed under high stringency for aseptic techniques. To 

begin, 100 µL of LB plus E. coli were added to each agar petri dish and spread evenly. 

The LB plus E. coli was allowed to dry completely before proceeding. Sterile disc (3) 

were evenly placed in a triangular formation on the agar petri dish and tweezers were 

used to lightly press the disc onto the agar. The intended amount of M. oleifera 

subfraction was added to each sterile disc. The diffusion assays were incubated at 37°C 

for 10 hours. Zones of inhibition exhibited by the M. oleifera extracts were measured to 

the nearest 0.5 mm.  

 

Diffusion Assay for Determination of Minimum Inhibitory Amount 

 The protocol for disk diffusion assays, as mentioned above, was used to determine 

the minimum amount of M. oleifera subfraction needed to inhibit any growth of E. coli. 

Agar plates inoculated with E. coli were subjected to diminishing amounts of M. oleifera 

subfractions and incubated for 24 h at 37oC. The minimum amount of M. oleifera needed 
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to inhibit E. coli was determined to the lowest amount of M. oleifera subfraction that 

produced a measurable zone of inhibition when compared to a 0.1 M PBS treated control.  

  

Diffusion Assay for Determination of Dose-Dependency  

 The protocol for disk diffusion assays, as mentioned above, was used to determine 

the responsiveness of M. oleifera subfraction on E. coli growth inhibition. E. coli 

inoculated agar plates of the same M. oleifera subfraction at amounts of 20, 10, and 5 µg 

were incubated for 24 h at 37oC. The diffusion assays were analyzed for differences in 

zones of inhibitions to the nearest 0.5 mm. As with the MIA diffusion assays, 0.1 M PBS 

treatment groups were used as controls for the dose-dependency tests.  

 

Liquid Broth Assays for LD50  

 All procedures required a high stringency for aseptic techniques. Test tubes were 

prepared with 1 mL of LB and 10 µL of LB plus E. coli. Once vortexed, M. oleifera 

subfractions were added to the test tubes. The inoculated test tubes were incubated for 24 

h at 37oC. Using LB as a baseline, anti-bacterial efficacy of the M. oleifera subfractions 

was measured by spectrophotometry at 600 nm. Concentrations of each M. oleifera 

subfraction were manipulated until half of the bacteria concentrations in the control 

groups were matched. Liquid assays treated with 0.1 M PBS were used as controls. 

 

Liquid Broth Assays for MBA  

 All procedures required a high stringency for aseptic techniques. Test tubes were 

prepared with 1 mL of LB and 10 µL of LB plus E. coli. Once vortexed, M. oleifera 
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subfractions were added to the test tubes. The inoculated test tubes were incubated for 24 

h at 37oC. Using LB as a baseline, anti-bacterial efficacy of the M. oleifera subfractions 

was measured by spectrophotometry at 600 nm. Concentrations of each M. oleifera 

subfraction were manipulated until all of the bacteria in solution were killed. Again, 

liquid assays treated with 0.1 M PBS were used for control groups.  
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RESULTS 

 

Ethanolic M. oleifera extract shows the most anti-bacterial properties by diffusion assay: 

 The phytochemicals of the five whole leaf M. oleifera extracts were tested to 

determine the anti-bacterial efficacy of each extract. The zones of inhibition from 

diffusion assays were used to assess the anti-bacterial properties of each extract against E. 

coli growth. Butanol and methanol extracts showed zones of inhibition similar to that of 

the control water extract (Figure 1). The 80/20 ethanol/water extract demonstrated zones 

of inhibition twice as large as the butanol, methanol and water extracts (Figure 1). The 

pure ethanol extract had the largest zones of inhibition, and thus the most anti-bacterial 

efficacy of the five M. oleifera extracts, with an average zone of inhibition significantly 

greater than all of the extracts (Figure 1).  

 

HPLC of the Whole-Leaf Ethanolic M. oleifera Extract Results in Subfractions: 

 The HPLC of the whole-leaf ethanolic M. oleifera generated 8 sub-fractions, with 

varying concentrations (Table I). In order to compare the anti-bacterial properties and 

effectiveness of the sub-fractions, each sub-fraction was diluted in 0.1 M PBS to a final 1 

mg/mL concentration.  

 
 
M. oleifera sub-fraction 5 shows a significant anti-bacterial efficacy: 

 The seven HPLC sub-fractions of the ethanolic whole leaf M. oleifera extract 

(subfraction 1 was excluded based on its high water content or over dilution) were tested 

at the same concentration to determine the anti-bacterial efficacy of each sub-fraction. 
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The zones of inhibition from diffusion assays were used to assess the anti-bacterial 

properties of each sub-fraction against E. coli growth. Sub-fractions 6 and 7 showed 

inhibition of growth similar to the PBS control (Figure 2). Sub-fractions 2, 3, and 4 

exhibited minimal inhibition to bacterial growth, with sub-fraction 8 exerting a two-fold 

inhibition when compared to the other sub-fractions (Figure 2). Sub-fraction 5 induced 

the most anti-bacterial efficacy that was significantly greater than any other sub-fraction 

(Figure 2).  

 
 
M. oleifera subfractions 4, 5, and 6 inhibit bacterial growth with the least concentration: 

 Following the studies of the diffusion assay of each sub-fraction (Figure 2), 

studies on minimum inhibitory amount of each subfraction was conducted. Sub-fractions 

3, 7, and 8 displayed the highest concentration to inhibit E. coli growth (Table II). In 

contrast, the concentrations required to inhibit bacterial growth for sub-fractions 2 and 4 

was moderate (Table II), while sub-fractions 5 and 6 had the least concentration to exert 

inhibition of E. coli growth (Table II). 

 

M. Oleifera subfraction 5 requires lowest amount for Lethal-Dose 50 (LD50): 

 The lethal-dose 50 (LD50) of sub-fraction 4, 5, and 6 was analyzed using 

spectrophotometer at OD600. Although sub-fraction 6 had the highest concentration post 

HPLC, sub-fraction 6 required the highest amount to achieve LD50 (Table III). Sub-

fractions 4 and 5 required far less quantities to inhibit bacterial growth, with sub-fraction 

5 displaying the least amount for LD50 (Table III). 
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LD50 of sub-fractions 4, 5, and 6 also displayed minimum bactericidal amount (MBA): 

 In vitro methods similar to the LD50 analysis of subfractions 4, 5, and 6 were used 

to determine the MBA of sub-fractions 4, 5, and 6. The MBAs of sub-fractions 4, 5, and 6 

were the same as the LD50s for sub-fraction 4, 5, and 6 (Table IV).  

 

Sub-fractions 4, 5, and 6 act in a dose-dependent manner: 

 The anti-bacterial efficacies of all sub-fractions were tested for inhibiting E. coli 

growth at 5, 10 and 20µg. The diffusion assays of sub-fraction 4 (Figure 3), sub-fraction 

5 (Figure 4), and sub-fraction 6 (Figure 5) displayed dose-dependent responses in 

inhibiting E. coli growth. Sub-fractions 4, 5 and 6 all inhibited the most E. coli growth at 

20 µg, some growth at 10 µg and did not inhibit any growth at 5 µg (Figures 3, 4, and 5). 

 
 
Subfractions 4, 5, and 6 do not exhibit a synergistic effect: 

 Surprisingly, even though sub-fractions 4, 5 and 6 exhibited dose-dependent 

response (Figures 3, 4 and 5) the combined sub-fractions did not display any synergism 

in any significant way in the inhibition of E. coli growth (when compared to subfraction 5 

(Figure 6).   
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DISCUSSION 

 In vitro experiments in the present study were utilized to determine the anti-

bacterial efficacy of sub-fractions of HPLC-isolated whole leaf ethanolic M. oleifera 

extract E. coli. While these studies are preliminary, the evidence generated here lays the 

foundation for identifying the specific individual active compounds in each sub-fraction 

with anti-bacterial biological activities in M. oleifera in the future. The findings of the 

present study reveal that sub-fraction 5 exhibited the most potent anti-bacterial activity 

thus offering the most promising potential.  

 While the ethanolic, chloroform, and aqueous extracts of M. oleifera have all been 

shown to inhibit the growth of E. coli (Smith, 2016 & Abalaka, 2012), little is known 

about the identities of the specific phytochemicals that attribute to its antibacterial 

properties. By separating the M. oleifera whole leaf ethanolic extract into subfractions, 

further identification of individual compounds could be achieved. The initial screening of 

the present study indicated that subfractions 2, 3, 4, 5, and 8 were effective at inhibiting 

E. coli growth over the course of 24 hours; however, additional screenings for minimum 

inhibitory amounts showed that all subfractions 2-8 could prevent E. coli growth over the 

course of 10 hours.  The variations in sub-fraction efficacy could be due to the effects of 

phytochemical identity, phytochemical concentration and bacteria susceptibility 

(Odenholt, 2003). While no E. coli strains resistant to M. oleifera have been identified, 

the separation of M. oleifera phytochemicals by HPLC could be the source of differing 

antibacterial properties between sub-fractions. HPLC separates compounds in a sample 

by using mobile and stationary phases to exploit differing polarities (Waters, 2018). It is 

possible that the HPLC separation of the whole-leaf M. oleifera ethanolic extract into 
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sub-fractions by HPLC divided the antibacterial phytochemicals into multiple sub-

fractions, as seen in the present study.  

The screening for minimum inhibitory amount showed that subfractions 5 and 6 

required the least amount of extract to inhibit any E. coli growth, implying that they were 

the most potent. These preliminary screenings of the M. oleifera whole leaf ethanolic 

subfractions indicate that the phytochemicals with the highest antibacterial efficacy are 

likely to be concentrated in or around subfraction 5. This assumption led to further 

examination of subfractions 4, 5, and 6.  

 The determination of the most potent subfraction for inhibiting E. coli called for 

quantitative analysis through LD50. Spectrophotometer data indicated that subfraction 5 

required the least amount of extract to inhibit 50% of the cultures growth, followed by 

subfractions 4 and 6 respectively. Interestingly, the amount of subfraction needed to 

inhibit 50% of the E. coli growth was the same as the MBA needed to inhibit all E. coli 

growth. Such results indicate that M. oleifera whole leaf ethanolic extract subfraction 4, 

5, and 6 act in an all-or-none threshold manner for inhibiting E. coli growth in liquid 

cultures. These findings would suggest that relatively low dosages of M. oleifera 

phytochemicals could be used as potential antibiotics. Even so, the all-or-none 

prescription dosage of M. oleifera as an antibiotic could be high, but M. oleifera has been 

shown to be safe when taken orally (Awodele, 2012).  

 Bacterial infections pose challenging symptoms unique to both the pathogen and 

the infected individual (Busch, 1998). Despite the individual-based need for antibacterial 

treatment and the increasing trend of antibacterial resistance, the development of novel 

antibiotics has declined rapidly since the late 1960’s (Conly, 2005). In the present study, 
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dose-dependent assays were conducted to ensure that M. oleifera whole leaf ethanolic 

extract subfractions could be used in a case-by-case scenario. Subfractions 4, 5, and 6 all 

acted in a dose-dependent manner with E. coli inhibition proportional to the amount of 

subfraction added to the assay. These results suggest that the phytochemicals of 

subfractions 4, 5, and 6 can be strategically utilized in varying dosages to combat E. coli 

growth. Such dose-dependent qualities would be useful for devising individualistic 

medical treatments and preventing the likelihood of antibacterial resistance by over 

prescription. Furthermore, such aspects would be medically beneficial and economical in 

developing countries if M. oleifera were used as a naturopathic antibiotic.  

 Previous studies have shown that phytochemicals of various plants can act 

together in a synergistic way to lysis bacteria (Satyan, 2011). While these findings 

discussed the antibacterial efficacy of phytochemicals from multiple plant sources, such 

as Allium cepa, Allium sativum, etc., little is known about the relationship between 

phytochemicals from the same plant. The final screening of the present study sought to 

determine if any synergistic relationship existed between the phytochemicals of 

subfractions 4, 5, and 6 that could elicit more E. coli inhibition than just one subfraction 

alone. In comparison with the most potent subfraction, subfraction 5, the synergistic 

mixture of subfractions 4, 5, and 6, to our surprise, showed no difference in the inhibition 

of E. coli growth. These results in the present study indicate that no phytochemical 

synergy exist between subfractions 4, 5, and 6, and while any subfraction prevented E. 

coli growth to some degree, subfraction 5 contains the most potent phytochemical in 

regards to E. coli inhibition. It is possible that there may be some synergy that may exist 

between some other sub-fractions. Future studies should investigate this.   
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 Previous proteomic studies in our lab have identified several possible pathways of 

antibacterial activity by the ethanolic whole-leaf M. oleifera extract against E. coli 

(Smith, 2016). Such modes of attack include affecting stress response, metabolic, and 

membrane instability, as well as disrupting many more regulatory processes in E. coli. 

While the present study did not investigate the identities of the phytochemicals 

responsible for the antibacterial properties of each sub-fraction, it is likely that these 

phytochemicals are inhibiting E. coli growth by similar mechanisms. Future studies 

should seek to examine the underlying antibacterial mechanisms of each sub-fraction by 

analyzing the proteomic data associated with each sub-fraction.  

 The present study suggests that ethanolic whole-leaf M. oleifera sub-fractions do 

possess phytochemicals effective for inhibiting E. coli growth. While more research is 

required to determine the molecular mechanisms behind each sub-fraction and accurately 

identify the phytochemicals responsible for its antibacterial properties, M. oleifera may 

one day be a natural and safe alternative to prescription antibiotics. A M. olefiera 

antibiotic would not only decrease the prevalence of antibacterial resistance, but will also 

provide an economic medical treatment for infection in underdeveloped regions of the 

globe. Most importantly, M. oleifera may one day save the millions of lives impacted by 

bacterial infection induced pre-term birth. 
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TABLES 
 

Table 1. Initial Concentrations of M. oleifera Sub-fractions 
 

Sub-fraction Concentration (mg/mL) 
1 0.053 
2 4.178 
3 6.933 
4 2.163 
5 1.960 
6 43.174 
7 12.258 
8 20.637 
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Table 2. Diffusion assay showing the minimum amount of subfraction needed to inhibit 
E. coli growth (n=3) 
 

Moringa oleifera Sub-fraction Minimum Inhibitory Amount (µg) 
2 18 
3 20 
4 18 
5 9-10 
6 10 
7 20 
8 20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



20	
	

	

Table 3. Lethal dose 50 (LD50) results of M. oleifera subfractions 4, 5 and 6 (n=3) 
 

Moringa oleifera Sub-fraction LD50 (µg) 
4 220-230 
5 150-156 
6 1720-1849 
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Table 4. The MBA of M. oleifera subfractions 4, 5, and 6 (n=3) 
 

Moringa oleifera Sub-fraction MBC (µg) 
4 220-230 
5 150-156 
6 1720-1849 
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FIGURES 
 

 
Figure 1. Diffusion assay showing the diameter inhibition of five different M. oleifera 
extracts at 20 µg: Data shows the most antibacterial performance by the ethanol extract, 
closely followed by the 80/20 ethanol/water extract.  
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Figure 2. Diffusion assay showing diameter inhibition zone of seven M. oleifera sub-
fractions at 20 µg: Data shows significant bacterial growth inhibition by sub-fractions 5 
and 8. * p ≤0.05 5 vs. 8; ** p ≤0.05 vs. 7; *** p≤0.05 vs. 6, **** p≤0.05 vs. 7, ***** 
p≤0.05 vs. 6 (n=3).  
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Figure 3. Dose-dependent diffusion assay showing the inhibition of E. coli growth by 
MO sub-fraction 4 at varying amounts: The concentration of sub-fraction 4 at which it 
inhibited the most bacterial growth was at 20 µg, with some limited inhibition at 10 µg, 
and none at 5 µg. * p ≤0.01 vs. 5, ** p ≤0.01 vs. 5, *** p ≤0.01 vs. 10. (n=3).  
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Figure 4. Dose-dependent diffusion assay showing the inhibition of E. coli growth by 
MO sub-fraction 5 at varying amounts: The concentration of sub-fraction 5 at which it 
inhibited the most bacterial growth was at 20 µg, with some limited inhibition at 10 µg, 
and none at 5 µg. * p ≤0.01 vs. 5, ** p ≤0.01 vs. 5. (n=3). 
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Figure 5. Dose-dependent diffusion assay showing the inhibition of E. coli growth by 
MO sub-fraction 6 at varying amounts: The concentration of sub-fraction 6 at which it 
inhibited the most bacterial growth was at 20 µg, with some limited inhibition at 10 µg, 
and none at 5 µg. * p≤0.05 vs. 5, ** p ≤0.05 vs. 5, ***p≤0.05 (n=3).  
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Figure 6. Diffusion assay showing the antibacterial growth inhibition of combined 
sub-fractions 4, 5 and 6 at 20 µg: No significant synergistic effect in antibacterial 
growth inhibition was observed when sub-fractions 4, 5, and 6 when combined compared 
to the leading subfraction 5.  
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